I noticed, that Python evaluates many exponentiation with float infinities, to 1 or inf, where limit does actually not converge. It think it would be better, if Python evaluated these to nan.

```
M1=float("inf")
M2=float("-inf")
print("(-∞)**0.25 should be inf+infj, but python returns :",M2**(0.25))#https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity+%28%28-x%29%5E0.25%29
print("(-∞)**0 should be nan. For example lim x->infinity ((-(x^x))^(1/x))=∞ , but python returns :",M2**0)#https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity+%28%28-%28x%5Ex%29%29%5E%281%2Fx%29%29
print("(-2)**∞ should be nan,beacuse (-2)**x=2**x*cos(π*x)+1j*2**x*sin(π*x), but python returns :",(-2)**M1) #https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity+%28%28-2%29%5E%28x%29%29
print("(-1)**∞ should be nan,beacuse (-1)**x=cos(π*x)+1j*sin(π*x), but python returns :",(-1)**M1)#https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity+%28%28-1%29%5E%28x%29%29
print("(-1)**(-∞) should be nan,beacuse (-1)**x=cos(π*x)-1j*sin(π*x), but python returns :",(-1)**M2)#https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity+%28%28-1%29%5E%28-x%29%29
print("0**0 should be nan, but python returns:",0**0)#https://www.wolframalpha.com/input/?i=0%5E0
print("∞**0 should be nan. For example lim x->infinity((x^x)^(1/x))=∞ , but python returns :",M1**0)#https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity+%28%28x%5Ex%29%5E%281%2Fx%29%29
print("(-∞)**∞ should be nan. For example lim x->infinity((-x)^x)= lim x->infinity (x^x*e^(i*π*x)) , but python returns :",M2**M1)#https://www.wolframalpha.com/input/?i=lim+x-%3Einfinity%28%28-x%29%5Ex%29
```

If someone wants to argue, that float(“inf”)**0 should be 1, because 0 is ecxact value, not limit, then also float(“inf”)*0 should be 0, but Python returns nan.